在pandas数据框架中寻找目标值[英] Find target values in pandas dataframe

本文是小编为大家收集整理的关于在pandas数据框架中寻找目标值的处理方法,想解了在pandas数据框架中寻找目标值的问题怎么解决?在pandas数据框架中寻找目标值问题的解决办法?那么可以参考本文帮助大家快速定位并解决问题。

问题描述

我有一个多级数据框 df.作为列,我有不同的"对象"我分析.作为行索引,我有一个案例 ID lc 和时间 t.

对于每种情况 lc,我需要找到时间 t(理想情况下是插值,但最接近的值就足够了)每个对象都达到了目标值.

这个目标值是给定对象在时间 t==0 的函数.

import pandas as pd
print(pd.__version__)

0.16.2

虚拟数据集示例:

data = {1: {(1014, 0.0): 20.25,
     (1014, 0.0991): 19.08,
     (1014, 0.1991): 18.43,
     (1014, 0.2991): 19.03,
     (1014, 0.3991): 18.71,
     (1015, 0.0): 20.22,
     (1015, 0.0991): 19.3,
     (1015, 0.1991): 18.68,
     (1015, 0.2991): 18.22,
     (1015, 0.3991): 17.84,
     (1016, 0.0): 21.75,
     (1016, 0.0991): 19.97,
     (1016, 0.1991): 19.65,
     (1016, 0.2991): 19.29,
     (1016, 0.3991): 18.94
    },
 2: {(1014, 0.0): 29.11,
     (1014, 0.0991): 28.68,
     (1014, 0.1991): 28.27,
     (1014, 0.2991): 27.46,
     (1014, 0.3991): 26.96,
     (1015, 0.0): 29.22,
     (1015, 0.0991): 28.64,
     (1015, 0.1991): 28.18,
     (1015, 0.2991): 27.74,
     (1015, 0.3991): 27.25,
     (1016, 0.0): 29.17,
     (1016, 0.0991): 28.68,
     (1016, 0.1991): 28.17,
     (1016, 0.2991): 27.68,
     (1016, 0.3991): 27.18
    },
 3: {(1014, 0.0): 22.01,
     (1014, 0.0991): 21.5,
     (1014, 0.1991): 21.18,
     (1014, 0.2991): 20.58,
     (1014, 0.3991): 20.21,
     (1015, 0.0): 21.81,
     (1015, 0.0991): 21.46,
     (1015, 0.1991): 21.11,
     (1015, 0.2991): 20.78,
     (1015, 0.3991): 20.42,
     (1016, 0.0): 21.82,
     (1016, 0.0991): 21.49,
     (1016, 0.1991): 21.11,
     (1016, 0.2991): 20.75,
     (1016, 0.3991): 20.37
    }}

df = pd.DataFrame(data).sort()
df.index.names=['case', 't']

Dataframe 看起来像这样:

                 1      2      3
case t                          
1014 0.0000  20.25  29.11  22.01
     0.0991  19.08  28.68  21.50
     0.1991  18.43  28.27  21.18
     0.2991  19.03  27.46  20.58
     0.3991  18.71  26.96  20.21
1015 0.0000  20.22  29.22  21.81
     0.0991  19.30  28.64  21.46
     0.1991  18.68  28.18  21.11
     0.2991  18.22  27.74  20.78
     0.3991  17.84  27.25  20.42
1016 0.0000  21.75  29.17  21.82
     0.0991  19.97  28.68  21.49
     0.1991  19.65  28.17  21.11
     0.2991  19.29  27.68  20.75
     0.3991  18.94  27.18  20.37

目标值是时间 t==0 的值的函数.通常,这将是半场期间的 k=0.5.对于当前样本,我们将取 k=0.926

由于值已排序,因此可以为每种情况取第一行.

targets = df.groupby(level='case').first() * 0.926
print(targets)

             1         2         3
case                              
1014  18.75150  26.95586  20.38126
1015  18.72372  27.05772  20.19606
1016  20.14050  27.01142  20.20532

现在,我怎样才能简单地构建以下数据框,它显示t 每个对象达到上面计算的目标值的时间?

             1         2         3
case                              
1014    0.3991    0.3991    0.2991
1015    0.1991    0.3991    0.3991
1016    0.0991    0.3991    0.3991

推荐答案

这些有点hack,看看有没有更好的解决方案:

In [36]:
targets['t']=0

In [37]:
df2 = df.reset_index().set_index('case') - targets

In [38]:
df3 = df2.groupby(df2.index).transform(lambda x: x.abs()==np.min(x.abs()))

In [39]:
df4 = pd.DataFrame({'1': df2.t[df3[1]],
                    '2': df2.t[df3[2]],
                    '3': df2.t[df3[3]]})

print df4

           1       2       3
case                        
1014  0.3991  0.3991  0.3991
1015  0.1991  0.3991  0.3991
1016  0.0991  0.3991  0.3991

本文地址:https://www.itbaoku.cn/post/1727751.html