本文是小编为大家收集整理的关于在pandas数据框架中寻找目标值的处理/解决方法,可以参考本文帮助大家快速定位并解决问题,中文翻译不准确的可切换到English标签页查看源文。
问题描述
我有一个多级数据框架df.作为列,我有不同的"对象" 我分析.作为行索引,我有一个案例ID lc,并且时间t.
我需要找到每种情况lc的时间t(理想情况下是插值,但是 最接近的值足够良好),每个对象都达到目标值.
此目标值是时间t==0的给定对象的函数.
import pandas as pd print(pd.__version__) 0.16.2
虚拟数据集示例:
data = {1: {(1014, 0.0): 20.25, (1014, 0.0991): 19.08, (1014, 0.1991): 18.43, (1014, 0.2991): 19.03, (1014, 0.3991): 18.71, (1015, 0.0): 20.22, (1015, 0.0991): 19.3, (1015, 0.1991): 18.68, (1015, 0.2991): 18.22, (1015, 0.3991): 17.84, (1016, 0.0): 21.75, (1016, 0.0991): 19.97, (1016, 0.1991): 19.65, (1016, 0.2991): 19.29, (1016, 0.3991): 18.94 }, 2: {(1014, 0.0): 29.11, (1014, 0.0991): 28.68, (1014, 0.1991): 28.27, (1014, 0.2991): 27.46, (1014, 0.3991): 26.96, (1015, 0.0): 29.22, (1015, 0.0991): 28.64, (1015, 0.1991): 28.18, (1015, 0.2991): 27.74, (1015, 0.3991): 27.25, (1016, 0.0): 29.17, (1016, 0.0991): 28.68, (1016, 0.1991): 28.17, (1016, 0.2991): 27.68, (1016, 0.3991): 27.18 }, 3: {(1014, 0.0): 22.01, (1014, 0.0991): 21.5, (1014, 0.1991): 21.18, (1014, 0.2991): 20.58, (1014, 0.3991): 20.21, (1015, 0.0): 21.81, (1015, 0.0991): 21.46, (1015, 0.1991): 21.11, (1015, 0.2991): 20.78, (1015, 0.3991): 20.42, (1016, 0.0): 21.82, (1016, 0.0991): 21.49, (1016, 0.1991): 21.11, (1016, 0.2991): 20.75, (1016, 0.3991): 20.37 }} df = pd.DataFrame(data).sort() df.index.names=['case', 't']
dataFrame看起来很像:
1 2 3 case t 1014 0.0000 20.25 29.11 22.01 0.0991 19.08 28.68 21.50 0.1991 18.43 28.27 21.18 0.2991 19.03 27.46 20.58 0.3991 18.71 26.96 20.21 1015 0.0000 20.22 29.22 21.81 0.0991 19.30 28.64 21.46 0.1991 18.68 28.18 21.11 0.2991 18.22 27.74 20.78 0.3991 17.84 27.25 20.42 1016 0.0000 21.75 29.17 21.82 0.0991 19.97 28.68 21.49 0.1991 19.65 28.17 21.11 0.2991 19.29 27.68 20.75 0.3991 18.94 27.18 20.37
目标值是时间t==0值的函数. 通常,这将是k = 0.5的半场时间.对于当前样本,我们将k = 0.926
由于值是分类的,因此可以为每种情况采取第一行.
targets = df.groupby(level='case').first() * 0.926 print(targets) 1 2 3 case 1014 18.75150 26.95586 20.38126 1015 18.72372 27.05772 20.19606 1016 20.14050 27.01142 20.20532
现在,我如何简单地构建以下数据框架,显示 时间t在每个对象达到上面计算的目标值?
1 2 3 case 1014 0.3991 0.3991 0.2991 1015 0.1991 0.3991 0.3991 1016 0.0991 0.3991 0.3991
推荐答案
这些有点黑客,让我们看看是否有更好的解决方案:
In [36]: targets['t']=0 In [37]: df2 = df.reset_index().set_index('case') - targets In [38]: df3 = df2.groupby(df2.index).transform(lambda x: x.abs()==np.min(x.abs())) In [39]: df4 = pd.DataFrame({'1': df2.t[df3[1]], '2': df2.t[df3[2]], '3': df2.t[df3[3]]}) print df4 1 2 3 case 1014 0.3991 0.3991 0.3991 1015 0.1991 0.3991 0.3991 1016 0.0991 0.3991 0.3991
问题描述
I have a multilevel dataframe df. As columns, I have different "objects" I analyze. As rows index , I have a Case ID lc, and time t.
I need to find, for each case lc, the time t (ideally interpolated, but closest value is fine enough) at which each object reached a target value.
This target value is a function of the given object at time t==0.
import pandas as pd print(pd.__version__) 0.16.2
Dummy data set example:
data = {1: {(1014, 0.0): 20.25, (1014, 0.0991): 19.08, (1014, 0.1991): 18.43, (1014, 0.2991): 19.03, (1014, 0.3991): 18.71, (1015, 0.0): 20.22, (1015, 0.0991): 19.3, (1015, 0.1991): 18.68, (1015, 0.2991): 18.22, (1015, 0.3991): 17.84, (1016, 0.0): 21.75, (1016, 0.0991): 19.97, (1016, 0.1991): 19.65, (1016, 0.2991): 19.29, (1016, 0.3991): 18.94 }, 2: {(1014, 0.0): 29.11, (1014, 0.0991): 28.68, (1014, 0.1991): 28.27, (1014, 0.2991): 27.46, (1014, 0.3991): 26.96, (1015, 0.0): 29.22, (1015, 0.0991): 28.64, (1015, 0.1991): 28.18, (1015, 0.2991): 27.74, (1015, 0.3991): 27.25, (1016, 0.0): 29.17, (1016, 0.0991): 28.68, (1016, 0.1991): 28.17, (1016, 0.2991): 27.68, (1016, 0.3991): 27.18 }, 3: {(1014, 0.0): 22.01, (1014, 0.0991): 21.5, (1014, 0.1991): 21.18, (1014, 0.2991): 20.58, (1014, 0.3991): 20.21, (1015, 0.0): 21.81, (1015, 0.0991): 21.46, (1015, 0.1991): 21.11, (1015, 0.2991): 20.78, (1015, 0.3991): 20.42, (1016, 0.0): 21.82, (1016, 0.0991): 21.49, (1016, 0.1991): 21.11, (1016, 0.2991): 20.75, (1016, 0.3991): 20.37 }} df = pd.DataFrame(data).sort() df.index.names=['case', 't']
Dataframe looks thus like:
1 2 3 case t 1014 0.0000 20.25 29.11 22.01 0.0991 19.08 28.68 21.50 0.1991 18.43 28.27 21.18 0.2991 19.03 27.46 20.58 0.3991 18.71 26.96 20.21 1015 0.0000 20.22 29.22 21.81 0.0991 19.30 28.64 21.46 0.1991 18.68 28.18 21.11 0.2991 18.22 27.74 20.78 0.3991 17.84 27.25 20.42 1016 0.0000 21.75 29.17 21.82 0.0991 19.97 28.68 21.49 0.1991 19.65 28.17 21.11 0.2991 19.29 27.68 20.75 0.3991 18.94 27.18 20.37
Target values are a function of the values at time t==0. typically, this would be k=0.5 for half-time period. For the current sample,we will take k=0.926
Since values are sorted, it is ok to take the first lines for each case.
targets = df.groupby(level='case').first() * 0.926 print(targets) 1 2 3 case 1014 18.75150 26.95586 20.38126 1015 18.72372 27.05772 20.19606 1016 20.14050 27.01142 20.20532
Now, How could I simply build the following dataframe, which shows time t at wich each object reach target value calculated above?
1 2 3 case 1014 0.3991 0.3991 0.2991 1015 0.1991 0.3991 0.3991 1016 0.0991 0.3991 0.3991
推荐答案
These are somewhat of a hack, let's see if there are better solutions:
In [36]: targets['t']=0 In [37]: df2 = df.reset_index().set_index('case') - targets In [38]: df3 = df2.groupby(df2.index).transform(lambda x: x.abs()==np.min(x.abs())) In [39]: df4 = pd.DataFrame({'1': df2.t[df3[1]], '2': df2.t[df3[2]], '3': df2.t[df3[3]]}) print df4 1 2 3 case 1014 0.3991 0.3991 0.3991 1015 0.1991 0.3991 0.3991 1016 0.0991 0.3991 0.3991