枚举具有相同前缀的列[英] Enumerate columns with same prefix

本文是小编为大家收集整理的关于枚举具有相同前缀的列的处理方法,想解了枚举具有相同前缀的列的问题怎么解决?枚举具有相同前缀的列问题的解决办法?那么可以参考本文帮助大家快速定位并解决问题。

问题描述

假设我们有以下简化数据:

df = pd.DataFrame({'A':list('abcd'),
                   'B':list('efgh'),
                   'Data_mean':[1,2,3,4],
                   'Data_std':[5,6,7,8],
                   'Data_corr':[9,10,11,12],
                   'Text_one':['foo', 'bar', 'foobar', 'barfoo'],
                   'Text_two':['bar', 'foo', 'barfoo', 'foobar'],
                   'Text_three':['bar', 'bar', 'barbar', 'foofoo']})

   A  B  Data_mean  Data_std  Data_corr Text_one Text_two Text_three
0  a  e          1         5          9      foo      bar        bar
1  b  f          2         6         10      bar      foo        bar
2  c  g          3         7         11   foobar   barfoo     barbar
3  d  h          4         8         12   barfoo   foobar     foofoo

我想用相同的前缀枚举列.在这种情况下,前缀为Data, Text.因此,预期输出将是:

   A  B  Data_mean1  Data_std2  Data_corr3 Text_one1 Text_two2 Text_three3
0  a  e           1          5           9       foo       bar         bar
1  b  f           2          6          10       bar       foo         bar
2  c  g           3          7          11    foobar    barfoo      barbar
3  d  h           4          8          12    barfoo    foobar      foofoo

注意枚举的列.


尝试解决方案#1 :

def enumerate_cols(dataframe, prefix):
    cols = []
    num = 1
    for col in dataframe.columns:
        if col.startswith(prefix):
            cols.append(col + str(num))
            num += 1
        else:
            cols.append(col)

    return cols
enumerate_cols(df, 'Data')

['A',
 'B',
 'Data_mean1',
 'Data_std2',
 'Data_corr3',
 'Text_one',
 'Text_two',
 'Text_three']

尝试解决方案#2:

[c+str(x+1) for x, c in enumerate([col for col in df.columns if col.startswith('Data')])]
['Data_mean1', 'Data_std2', 'Data_corr3']

问题:是否有更轻松的解决方案,我也看了df.filter(like='Data')等.但看上去也很远.


xy问题
请确保我没有陷入 xy问题.我想使用 pd.wide_to_long ,但是stubnames列需要由一个数字后缀才能熔化数据框.

如文档所引用:

使用ubnames ['a','b'],此功能希望找到一组或多组列,a-suffix1,a-suffix2,…,b-suffix1,b-suffix1,b-suffix2,

pd.wide_to_long(df, stubnames=['Data', 'Text'], i=['A', 'B'], j='grp', sep='_')

这将返回一个空的数据框.

推荐答案

这个想法是将相同前缀的列分组,并为它们建立一个cumcount.

由于我们需要单独处理列,因此我们需要使用GroupBy.cumcount和np.where以两个步骤进行操作:

cols = df.columns.str.split('_').str[0].to_series()

df.columns = np.where(
    cols.groupby(level=0).transform('count') > 1, 
    cols.groupby(level=0).cumcount().add(1).astype(str).radd(df.columns), 
    cols
)

df
   A  B  Data_mean1  Data_std2  Data_corr3 Text_one1 Text_two2 Text_three3
0  a  e           1          5           9       foo       bar         bar
1  b  f           2          6          10       bar       foo         bar
2  c  g           3          7          11    foobar    barfoo      barbar
3  d  h           4          8          12    barfoo    foobar      foofoo

一个简单的解决方案是设置您不想添加后缀为索引的列.那么您可以简单地做

df.set_index(['A', 'B'], inplace=True)
df.columns = (
    df.columns.str.split('_')
      .str[0]
      .to_series()
      .groupby(level=0)
      .cumcount()
      .add(1)
      .astype(str)
      .radd(df.columns))

df
     Data_mean1  Data_std2  Data_corr3 Text_one1 Text_two2 Text_three3
A B                                                                   
a e           1          5           9       foo       bar         bar
b f           2          6          10       bar       foo         bar
c g           3          7          11    foobar    barfoo      barbar
d h           4          8          12    barfoo    foobar      foofoo

其他推荐答案

您也可以使用默认设备为每个前缀创建一个计数器.

from collections import defaultdict

prefix_starting_location = 2
columns = df.columns[prefix_starting_location:]
prefixes = set(col.split('_')[0] for col in columns)

new_cols = []
dd = defaultdict(int)
for col in columns:
    prefix = col.split('_')[0]
    dd[prefix] += 1
    new_cols.append(col + str(dd[prefix]))
df.columns = df.columns[:prefix_starting_location].tolist() + new_cols
>>> df
   A  B  Data_mean1  Data_std2  Data_corr3 Text_one1 Text_two2 Text_three3
0  a  e           1          5           9       foo       bar         bar
1  b  f           2          6          10       bar       foo         bar
2  c  g           3          7          11    foobar    barfoo      barbar
3  d  h           4          8          12    barfoo    foobar      foofoo
​

如果已知前缀:

prefixes = ['Data', 'Text']
new_cols = []
dd = defaultdict(int)
for col in df.columns:
    prefix = col.split('_')[0]
    if prefix in prefixes:
        dd[prefix] += 1
        new_cols.append(col + str(dd[prefix]))
    else:
        new_cols.append(col)

如果您的拆分字符_不在您的任何数据字段中:

new_cols = []
dd = defaultdict(int)
for col in df.columns:
    if '_' in col:
        prefix = col.split('_')[0]
        dd[prefix] += 1
        new_cols.append(col + str(dd[prefix]))
    else:
        new_cols.append(col)

df.columns = new_cols

其他推荐答案

您可以使用rename,例如:

l_word = ['Data','Text']
df = df.rename(columns={ col:col+str(i+1) 
                         for word in l_word 
                         for i, col in enumerate(df.filter(like=word))})

本文地址:https://www.itbaoku.cn/post/1727883.html