pandas groupby可以将一个DataFrame转换成一个系列吗?[英] Can pandas groupby transform a DataFrame into a Series?

本文是小编为大家收集整理的关于pandas groupby可以将一个DataFrame转换成一个系列吗?的处理方法,想解了pandas groupby可以将一个DataFrame转换成一个系列吗?的问题怎么解决?pandas groupby可以将一个DataFrame转换成一个系列吗?问题的解决办法?那么可以参考本文帮助大家快速定位并解决问题。

问题描述

我想使用 pandas 和 statsmodels 在数据框的子集上拟合线性模型并返回预测值.但是,我无法确定要使用的正确 pandas 习语.这是我想要做的:

import pandas as pd
import statsmodels.formula.api as sm
import seaborn as sns

tips = sns.load_dataset("tips")
def fit_predict(df):
    m = sm.ols("tip ~ total_bill", df).fit()
    return pd.Series(m.predict(df), index=df.index)
tips["predicted_tip"] = tips.groupby("day").transform(fit_predict)

这会引发以下错误:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-139-b3d2575e2def> in <module>()
----> 1 tips["predicted_tip"] = tips.groupby("day").transform(fit_predict)

/Users/mwaskom/anaconda/lib/python2.7/site-packages/pandas/core/groupby.pyc in transform(self, func, *args, **kwargs)
   3033                     return self._transform_general(func, *args, **kwargs)
   3034         except:
-> 3035             return self._transform_general(func, *args, **kwargs)
   3036 
   3037         # a reduction transform

/Users/mwaskom/anaconda/lib/python2.7/site-packages/pandas/core/groupby.pyc in _transform_general(self, func, *args, **kwargs)
   2988                     group.T.values[:] = res
   2989                 else:
-> 2990                     group.values[:] = res
   2991 
   2992                 applied.append(group)

ValueError: could not broadcast input array from shape (62) into shape (62,6)

这个错误是有道理的,因为我认为 .transform 想要将 DataFrame 映射到 DataFrame.但是有没有办法对 DataFrame 进行 groupby 操作,将每个块传递给一个函数,将其缩减为一个 Series(具有相同的索引),然后将生成的 Series 组合成可以插入原始数据帧的东西?

推荐答案

这里的顶部是一样的,我只是在使用一个玩具数据集 b/c 我在防火墙后面.

tips = pd.DataFrame({ 'day':list('MMMFFF'), 'tip':range(6), 
                      'total_bill':[10,40,20,80,50,40] })

def fit_predict(df):
    m = sm.ols("tip ~ total_bill", df).fit()
    return pd.Series(m.predict(df), index=df.index)

如果您将"转换"更改为"应用",您将获得:

tips.groupby("day").apply(fit_predict)

day   
F    3    2.923077
     4    4.307692
     5    4.769231
M    0    0.714286
     1    1.357143
     2    0.928571

这不是你想要的,但如果你放弃 level=0,你可以根据需要继续:

tips['predicted'] = tips.groupby("day").apply(fit_predict).reset_index(level=0,drop=True)

  day  tip  total_bill  predicted
0   M    0          10   0.714286
1   M    1          40   1.357143
2   M    2          20   0.928571
3   F    3          80   2.923077
4   F    4          50   4.307692
5   F    5          40   4.769231

本文地址:https://www.itbaoku.cn/post/1728041.html