只是什么是'大数据库'?[英] Just what is 'A big database'?

本文是小编为大家收集整理的关于只是什么是'大数据库'?的处理/解决方法,可以参考本文帮助大家快速定位并解决问题,中文翻译不准确的可切换到English标签页查看源文。

问题描述

好吧,我知道的愚蠢问题,但我看到了含糊的评论"大数据库"以及小和媒介,我想知道这意味着什么.有人可以为我们定义一个小型,中和大数据库SQL Neophytes吗?

推荐答案

没有一个小数据库变为中型或中等数据库变大的阈值.通常,当我听到这些条款时,我会想到存储的总记录方面的特定数量级.

  • 小:适合电子表格.
  • 媒介:适合商品服务器上的内存.
  • 大:适合提供商品云.
  • 很大:适合专门的环境;不寻常的存储,延迟或吞吐量特征.

作为海报 dkretz 建议,您也可以根据每种数据库具有的属性来考虑它.这样对此进行分类,我会说:

  • 小:性能不是问题.您的查询不正常,而无需进行任何特殊的优化.使用索引(例如索引)时,您只会看到边际性能差异.

  • 媒介:您的数据库可能有一名或多名员工,这些人员被分配给其维护和护理.这些人关注数据库的健康;他们的主要管理责任是防止不可接受的绩效问题并最大程度地减少停机时间.

  • 大:可能有专门的工作人员,他们的工作是在数据库上工作并提高性能,并确保应用程序更改不会导致数据库一生中的架构损坏.密切监视有关数据库健康和状态的指标.需要大量的专业知识来了解和执行优化.

  • 非常大:数据库存储大量必须容易访问的信息.绝对需要进行性能优化才能使每个查询中的每一盎司速度扭转速度,并且没有它,数据库将少得多,甚至无法使用.该数据库可以使用复杂或创新的复制或聚类技术,从而突破当前技术的界限.

请注意,这些完全是主观的,并且某人很可能对"大型"具有完全合法的替代定义.

其他推荐答案

一种方法是通过观察您的测试查询.

一个小数据库是一个索引无关紧要的数据库.

一个中等数据库是一个数据库,如果您没有适当的索引,则查询需要更长的时间.

一个大数据库是查询通常需要数小时来优化的一个大数据库,使用查询设计,索引修改和许多测试周期的组合.

其他推荐答案

大数据库是您必须停止使用关系数据库的数据库.

换句话说,一个归一化的关系数据库,世界上所有索引都无法帮助您满足您的响应时间要求.

如果您曾经不得不放弃其他事物的关系数据库,那么您要么是一个糟糕的数据库开发人员,没有专家DBA,要么拥有很大的数据库.

本文地址:https://www.itbaoku.cn/post/597401.html

问题描述

Ok, dumb question I know but I see the nebulous comment 'a large database' as well as small and medium and I wonder just what that means. Can someone define what a small, medium and large database is for us SQL neophytes?

推荐答案

There isn't a threshold where a small database becomes medium or a medium database becomes large. Generally, when I hear these terms, I think of particular orders of magnitude in terms of total records being stored.

  • Small: Fits in a spreadsheet.
  • Medium: Fits in memory on a commodity server.
  • Large: Fits in a commodity cloud offering.
  • Very large: Fits in a specialized environment; unusual storage, latency, or throughput characteristics.

As poster dkretz suggested, you could also think about it in terms of the properties each kind of database has. Categorizing it this way, I'd say:

  • Small: Performance is not a concern. Your queries run fine without making any special optimizations. You see only a marginal performance difference when using front-line enhancements like indexes.

  • Medium: Your database probably has one or more staff that are assigned part-time to its maintenance and care. These people pay attention to the database's health; their primary administrative responsibility is to prevent unacceptable performance problems and minimize downtime.

  • Large: Probably has dedicated staff member(s) whose job is to work on the database and improve performance, as well as make sure that application changes don't cause schema breakage over the lifetime of the database. Metrics about the health and status of the database are monitored closely. Significant expertise is required to understand and perform optimizations.

  • Very large: The database stores vast amounts of information that must be readily accessible. Performance optimizations are absolutely required to wring every last ounce of speed out of each queries, and without it, the database would be much less usable or even impossible to use. The database may be using sophisticated or innovative replication or clustering techniques, pushing the boundaries of current technology.

Note that these are entirely subjective, and that someone may very well have a perfectly legitimate alternate definition of "large".

其他推荐答案

One way to figure it is by observing your test queries.

A small database is one where indexes don't matter.

A medium database is one where queries take longer than one second if you don't have an appropriate index in place.

A big database is one where queries often take hours to optimize, using a combination of query design, index modification, and many test cycles.

其他推荐答案

Large database are ones that force you have to stop using relational databases.

In other words, a normalized, relational database where all the indexes in the world can't help you meet your response time requirements because of the massive JOINs.

If you've ever had to abandon relational databases for something else, you're either a poor database developer, have no expert DBA, or have a very large database.